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From onset of unsteadiness to chaos in a
differentially heated square cavity
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(Received 10 October 1994 and in revised form 15 September 1997)

We investigate with direct numerical simulations the onset of unsteadiness, the route
to chaos and the dynamics of fully chaotic natural convection in an upright square air-
filled differentially heated cavity with adiabatic top and bottom walls. The numerical
algorithm integrates the Boussinesq-type Navier–Stokes equations in velocity–pressure
formulation with a Chebyshev spatial approximation and a finite-difference second-
order time-marching scheme. Simulations are performed for Rayleigh numbers up to
1010, which is more than one order of magnitude higher than the onset of unsteadiness.
The dynamics of the time-dependent solutions, their time-averaged structure and
preliminary results concerning their statistics are presented. In particular, the internal
gravity waves are shown to play an important role in the time-dependent dynamics
of the solutions, both at the onset of unsteadiness and in the fully chaotic regime.
The influence of unsteadiness on the local and global heat transfer coefficients is also
examined.

1. Introduction
Many of the natural convection flows encountered in engineering applications are

characterized by length scales or temperature differences such that the correspond-
ing flows are very often turbulent. The past few years have witnessed an increasing
number of numerical solutions of the equations describing turbulent natural con-
vection in cavities. In these studies turbulence is accounted for through turbulence
models, amongst which the standard k–ε model is certainly the most popular. In
fact, low-Reynolds-number corrections have to be used because turbulence in natural
convection flows is generally weak. This low-Reynolds-number correction is necessary
in natural convective flows since the wall region simultaneously provides the driving
buoyancy force and acts to damp the turbulence.

On the other hand, direct numerical integrations of the basic unsteady Navier–
Stokes equations have generally focused on the instability mechanisms responsible
for turning an initially laminar flow into a chaotic one (Haldenwang 1984; Le Quéré
1987; Paolucci & Chenoweth 1989; Penot, Ndame & Le Quéré 1990; Henkes 1990).
In short, conclusions of these studies are that, in a differentially heated square cavity
with adiabatic top and bottom walls, unsteadiness sets in at a Rayleigh number value
slightly less than 2× 108. Surprisingly, this loss of stability is not due to an instability
of the vertical boundary layers but rather to an instability that takes place near the
‘departing’ corners in the detached flow region along the horizontal boundaries. The
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boundary layers themselves become unstable at a slightly higher Rayleigh number
and the route to chaos seems to proceed through quasi-periodicity.

In contrast to Rayleigh–Bénard-type configurations, only a few direct simulations
of turbulent flows have been performed to date in cavities heated from the sides. A
noticeable exception is the pioneering work of Fromm (1971) who first demonstrated,
more than 20 years ago, the feasibility of direct simulation of turbulent flow. Another
exception is the more recent direct simulation by Paolucci (1990) of two-dimensional
turbulent natural convection in a square cavity with adiabatic horizontal walls for a
Rayleigh number of 1010. The numerical algorithm was based on a primitive variable
formulation and an explicit first-order time-stepping code with second-order spatial
differencing on a non-uniform mesh. One of his main findings is that the stratification
in the core appears to be significantly reduced compared with the end of the steady
laminar regime.

We have performed direct numerical simulations of unsteady and chaotic natural
convection in a square cavity with adiabatic horizontal walls, for Rayleigh numbers
(Ra) based on the cavity height H from the onset of unsteadiness up to 1010. However,
we have focused our attention primarily on Rayleigh numbers below 109.5. In this
range of Rayleigh numbers, the solutions become increasingly ‘turbulent’. In this
paper, we discuss the possible transition mechanisms to unsteadiness and chaos. The
unsteady features of the flow are presented. Also, we discuss the statistical quantities of
interest in the ‘turbulent regime’, such as the time-averaged temperature and velocity
fields, kinetic energy and dissipation and also global heat transfer coefficients. It
is hoped that these results will improve our understanding of the fundamentals of
the dynamics of turbulent natural convection flows and help constitute data bases
that will eventually help the development of better turbulence models. It should be
noted that two-dimensional flows, no matter how chaotic they might be, are not
really ‘turbulent’ although we and others recursively use this terminology. Of course,
these computations will have to be extended to three-dimensions in the future, when
appropriate computational resources become available.

2. Problem description and algorithm
The description of the physical problem is given in de Vahl Davis & Jones (1983).

The cavity considered is of height H and its aspect ratio A is assumed to be equal to
unity here. It is subjected to a temperature difference ∆T across the vertical isothermal
walls while the top and bottom walls are adiabatic. The cavity is filled with a fluid of
Prandtl number (Pr) equal to 0.71 corresponding to air. The two-dimensional unsteady
Boussinesq equations in primitive variables, which govern the buoyancy-driven flow
in the cavity, are made dimensionless with the following reference quantities: Lr = H
for length, Vr = (α/H)/Ra1/2 for velocity and tr = (H2/α)Ra−1/2 for time where
Ra is the Rayleigh number Ra = gβ∆TH3/να. With these reference quantities, the
dimensionless equations are
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where u and w are the horizontal and vertical velocity components respectively and
P the pressure. Θ is the dimensionless temperature defined as (T − Tr)/∆T , where
Tr is the average of the cold and hot wall temperatures.

These equations are integrated by a pseudo-spectral algorithm combining a spatial
expansion in series of Chebyshev polynomials with a semi-implicit second-order
finite-difference time-marching scheme. The Helmholtz equations arising from time
discretization are solved with the tau-method and the partial diagonalization al-
gorithm described in Haidvogel & Zang (1979). The incompressibility condition is
treated by the use of an influence matrix technique (Le Quéré & Alziary de Roquefort
1985; Le Quéré 1991). For the sake of brevity, the details of the algorithm are not
reproduced here.

3. Results and discussion
3.1. Symmetry properties

Before presenting the results, it is worth recalling the following symmetry properties
for the configuration under study. It is well known that the equations (1), (2), (3) and
(4) with the specified boundary conditions admit solutions which are characterized
by a so-called centro-symmetry property. If S is the mapping which consists of a
rotation of π with respect to the centre of the computational domain,

Sf(x, z, t) = f(1− x, 1− z, t),

where f is a two-dimensional field, solutions showing this property have their tempera-
ture and velocity fields skew-symmetric with respect to the centre of the computational
domain. Their pressure field is symmetrical with respect to the centre of the domain,
i.e.

SΘ = −Θ, Su = −u, Sw = −w, SP = P .

Owing to the symmetries of the basis functions Tl(2x−1)×Tm(2z−1) (where Tl is the
lth degree Chebyshev polynomial), this property translates on the spectral coefficients
of the temperature, velocity and pressure fields. Any two-dimensional field f(x, z, t)
which is skew-symmetric (respectively symmetric) with respect to the centre of the
computational domain has all its spectral coefficients flm with l+m even (respectively
l + m odd) identically zero. It is then possible to build simple indicators of this
centro-symmetry property by considering, for example, two scalar quantities defined
for a field f(x, z, t) as

Es(f) =
∑

l+m=2p

f2
lm and Ea(f) =

∑
l+m=2p+1

f2
lm.

Solutions that satisfy the centro-symmetry property are characterized by Es(Θ) =
Es(u) = Es(w) = Ea(P ) = 0.

A priori assumption of centro-symmmetry could be used to significantly reduce the
computational effort needed (almost by a factor of 2 since only the non-zero spectral
coefficients could be solved for in the Helmholtz problems) and also reduces by a
factor of 4 the space needed for the storage of the influence matrix. However, in order
to allow for possible symmetry-breaking solutions to appear, we chose to compute
all the spectral coefficients of the fields and also to systematically monitor the time
evolution of the centro-symmetry-breaking indicator Es(Θ).
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Figure 1. (a) Time trace of temperature at location (x, z) = (0.15, 0.88), Ra = 1.84 × 108. (b)
Simultaneous evolution of indicator of breaking of centro-symmetry Es(Θ). Spatial resolution
72× 72, computations performed with ∆t = 5× 10−3.

3.2. First instability mechanism

3.2.1. Onset of unsteadiness

Figure 1(a) presents the time trace of the temperature at a given monitoring point
for Ra = 1.84 × 108. The time integration was started from the steady solution
at 1.8 × 108. It is noted that the solution first undergoes damped oscillations and
appears to reach a steady state, at least over a time scale of 3000 (in the convective
time units used here). This time integration was performed with ∆t = 0.005. This
apparently steady solution then starts to show macroscopic oscillations that grow
exponentially in time and eventually reaches an asymptotic finite-amplitude periodic
state. The period of the oscillation is approximately 22 time units which corresponds
to a frequency of 0.045. It is noted that the solution, in this asymptotic periodic
state, breaks the centro-symmetry property as indicated by the time evolution of
the centro-symmetry-breaking indicator Es(Θ) (figure 1b). This behaviour can be
explained by considering the spectrum of the Jacobian of the operator governing
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Figure 2. Sketch of the eigenvalues of the largest positive real part of the Jacobian
in the complex plane.

the time evolution of the solution (with the convention ∂U/∂t = L(U)U). Since
the domain is finite, the spectrum is discrete and we have schematically shown in
figure 2 the two pairs of complex eigenvalues of largest real part which account for
the observed behaviour. The pair of eigenvalues with negative real parts corresponds
to an eigenmode which displays the centro-symmetry property. This mode is still
stable and corresponds to the damped oscillations at the very beginning of the time
integration. The other pair of eigenvalues corresponds to the unstable eigenmode
that breaks the centro-symmetry. Because the initial condition is symmetrical and
because the temperature was chosen to be symmetrical (Θ ranges between −0.5 and
0.5), the solution initially stays in a subspace which is orthogonal to this symmetry-
breaking unstable eigenmode. However, as we are very close to the critical Rayleigh
number, naturally the growth rate of this unstable mode is very small. Furthermore,
owing to the above explanation (no perturbation is initially fed on the subspace that
breaks centro-symmetry), perturbations that break centro-symmetry have to grow
from roundoff errors (10−15 on the Cray computer we used) and it therefore takes a
very long time for these perturbations to reach a finite-amplitude level and eventually
make the solution unsteady and non-symmetrical.

This is further confirmed by performing similar computations for Rayleigh numbers
of 1.85 × 108 and 1.86 × 108, starting from the same initial condition. In these cases
the growth rates of the unstable centro-symmetry-breaking eigenmode are somewhat
larger and at the same time the decay rates of the stable centro-symmetric eigenmode
are somewhat smaller. This results in the temperature time signals shown in figure 3,
in which the amplification of the symmetry-breaking mode becomes visible before the
complete damping of the stable mode has taken place.

In view of the above, the so-called steady solution found for 1.8×108 was carefully
checked and there appeared to be no indication of this behaviour. Also, the centro-
symmetry-breaking solution for 1.84 × 108 was used as initial condition to integrate
with smaller values of the Rayleigh number. A finite-amplitude unsteady solution was
found for Ra = 1.83×108, whereas for Ra = 1.81×108, the solution reverted to a final
steady-state solution with Es(Θ) tending asymptotically to zero. For Ra = 1.82× 108,
the time integration was quite inconclusive, at least for the time period we integrated.
It is therefore concluded that the critical Rayleigh number value for the onset
of unsteadiness lies between 1.81 × 108 and 1.83 × 108. Further, the corresponding
eigenmode and the nonlinear solution break the centro-symmetry property.

It is possible to determine more accurately this critical value by looking at the
growth rates of Es(Θ) observed for these three time evolutions. Since these quantities
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Figure 3. Time traces of temperature at location (x, z) = (0.15, 0.88) for Ra = 1.85× 108 (a) and
Ra = 1.86× 108 (b). Spatial resolution 72× 72, computations performed with ∆t = 5× 10−3.

are initially zero, they grow exponentially in time and their growth rates scale like
(Ra − Rac). The growth rates, defined as dEs(Θ)/dt, are determined from the time
traces shown in figure 4(a) as the slopes of the curves for the time length over which
Es(Θ) grows linearly with t, and are plotted in figure 4(b). One observes clearly a
linear dependence on (Ra−Rac) and extrapolation to zero amplitude yields a critical
value of about 1.82 × 108. Computations performed with a larger spatial resolution
of (96, 96) confirmed the upper and lower bounds of 1.81 × 108 and 1.83 × 108. We
therefore believe that it can be stated, with a reasonable degree of certainty, that the
critical value for the onset of unsteadiness is 1.82± 0.01× 108.

This value is in good agreement with the value reported by Paolucci & Chenoweth
(1989) (1.7 × 108) or Henkes (1990) (1.9 × 108). In fact, it is very likely that Henkes
missed the symmetry-breaking bifurcation by not integrating sufficiently long in time,
his procedure also being free of initial perturbations on the symmetry-breaking sub-
space. On the other hand, Paolucci & Chenoweth used a non-Boussinesq formulation
with a small value of ∆T/T (typically 0.001) to satisfy the Boussinesq assumption.
They therefore always computed solutions that did not possess exactly the centro-
symmetry property. We believe that this is possibly the reason why their solutions
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Figure 4. (a) Time traces of log(Es(Θ)) for Ra = 1.84× 108, Ra = 1.85× 108,
and Ra = 1.86× 108. (b) Evolution of growth rate with Ra.

fall on the symmetry-breaking solution branch. This explanation is at least consistent
with the values they obtained (the critical value found by Paolucci & Chenoweth
being smaller than that reported by Henkes), regardless of the actual accuracy of
either numerical algorithm.

3.2.2. Structure of fluctuating temperature fields

A time sequence of the fluctuating temperature field is shown in figure 5. The
corresponding time-averaged temperature and flow fields are shown in figure 6. These
time-averaged fields were obtained in the usual manner by computing an arithmetic
mean of the instantaneous fields over several oscillation periods. The fluctuating
temperature was obtained by subtracting this time-averaged temperature field from
an instantaneous temperature field. As is quite clear from the figure, the fluctuating
temperature field reaches its maximum amplitude in a region that corresponds to the
base of the detached flow region which appears along the top horizontal wall in the
structure of the steady flow at large enough Rayleigh numbers. It is also apparent



88 P. Le Quéré and M. Behnia

(a) (b)
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Figure 5. (a–d) Time sequence of instantaneous fluctuating temperature fields for Ra = 1.84× 108;
spatial resolution 72× 72; isovalues for the fluctuating field are: ±1× 10−2, ±4× 10−3, ±1× 10−3,
±4× 10−4, ±1× 10−4.

(a) (b)

Figure 6. Time-averaged temperature (a) and streamfunction fields (b) for Ra = 1.84× 108; spatial
resolution 72 × 72; isovalues for the streamfunction are: 0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006,
0.007, 0.008.

that away from this region the contour lines are inclined at an angle of approximately
20◦ with respect to the horizontal and they propagate (in time) orthogonally to their
direction. We believe that these lines correspond to the wavefronts of internal waves
which are shed from the region where the instability mechanism takes place. This is
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supported by the following argument. It has been shown by Patterson & Imberger
(1980) that the stratified core region is capable of sustaining internal gravity waves.
These waves are characterized by the Brunt–Väısälä frequency, which in the time unit
considered here, is fBV = (CPr)1/2/2π, where C is the dimensionless stratification in
the core region in units of ∆T/H . This frequency fBV corresponds to the frequency
of the fundamental mode. Modes with higher wavenumbers are characterized by
frequencies smaller than fBV and fBV in fact represents an upper bound for all
possible wave patterns. In particular, it is known that if one is to excite a stratified
fluid with a particular frequency f, internal waves will be generated only if f 6 fBV .
These waves propagate along a wavevector inclined (with respect to the vertical)
at an angle θ = arcsin(f/fBV ) (see Tritton 1988 amongst others). Application of
this formula with f = 0.045 and fBV = 0.132 which corresponds to C = 1 yields
θ = 20◦ matching very closely the observed angle in figure 5. This strongly supports
the assertion that internal waves are shed away from the region where the primary
instabiliy mechanism takes place. It should also be noted that this phenomenon (the
excitation of the internal waves right at the onset of unsteadiness) does not occur in
taller cavities where the onset of unsteadiness is due to a travelling wave instability
characterized by typical frequencies of 0.5 which indeed is larger than fBV (Le Quéré
1987).

Concerning the physics of the primary instability mechanism, there has not been up
to now any definitive explanation of its origin. However, it is noted that the instability
takes place at the base of the detached flow region, and it is therefore believed that
the instability mechanism is related to this particular flow structure. Armfield (1992)
proposed that the existence of the detached flow region is due to a ‘thermal blocking
effect’. The adiabatic upper (or lower) thermal boundary condition imposed on the
flow as it exits the boundary layer causes a temperature overshoot (Armfield 1992)
and negative buoyancy forces lead to the plunging of the fluid downward. We find
this explanation rather convincing in that it takes into account the high sensitivity of
the flow in that region to the thermal boundary conditions at the top or bottom walls.
It is indeed noted that there is no detached region in the case of perfectly conducting
walls, where the fluid flows smoothly parallel to the horizontal wall.

Concerning the physical mechanism related to the onset of unsteadiness, several
hypotheses have been proposed. For instance, Paolucci & Chenoweth (1989) linked
the instability to an internal wave breaking mechanism. They argued that the onset of
unsteadiness is due to wave breaking of the internal hydraulic jump when the critical
Froude number characterizing the jump gets larger than 1.3, which corresponds to a
critical Rayleigh number value of 1.6 × 108/PrA3. The corresponding value indeed
closely matches the observed Ra at which the flow becomes unsteady. They also
noted a drop in the frequency of the internal wave motion as the critical Rayleigh is
approached. They linked this to an increase of the ratio of the vertical to horizontal
wavenumbers of the internal wave pattern.

On the other hand, Armfield (1992) and also Ravi, Henkes & Hoogendoorn (1994)
propose that there is no hydraulic jump in these regions. Therefore, the instability
mechanism cannot be ascribed to wave breaking, and another explanation has still
to be found. In order to get further indications on the nature of the mechanism, we
have computed accurately the period of the oscillations in the vicinity of the critical
Rayleigh number. These calculations have been very computationally demanding due
to the very long oscillation period and the stability criterion which required time
integrations on the order of 4000 time steps to complete one oscillation period. The
values obtained for several Rayleigh numbers are given in table 1. The solutions
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Ra # time steps Period Π Π × Ra−2/3 Π × Ra−3/4

1.82× 108 4289 21.445 6.677 (−5) 1.3686 (−5)
1.83× 108 4303 21.515 6.675 (−5) 1.367 (−5)
1.84× 108 4320 21.60 6.677 (−5) 1.367 (−5)
1.85× 108 4335 21.675 6.676 (−5) 1.372 (−5)

Table 1. Variation of period with Ra at onset of unsteadiness. Computations performed with
spatial resolution (96, 96) and time step ∆t = 0.005.

for increasing values of Ra were obtained by using the solution for the immediately
lower value of Ra as initial condition. All these solutions break the centro-symmetry
property and thus belong to the same branch of solutions. These values clearly show
that the dimensionless period increases with Ra and a power-law fit yields an exponent
α of between 2/3 and 3/4. The dimensional period of oscillation thus scales like ∆Tδ

with δ = α−1/2 > 1/6. Hence, the dimensional oscillation period increases with ∆T , a
somewhat curious result. It is also apparent, although not quantified, from the results
of Henkes (1990) that, in the vicinity of the critical point, the dimensionless frequency
decreases with increasing Ra. In contrast, the internal wave breaking mechanism
proposed by Paolucci & Chenoweth 1989 would be characterized by a dimensional
frequency scaling of ∆T 1/2. This does not agree with our findings, and thus seems to
rule out the internal wave breaking mechanism.

An understanding of the mechanism could perhaps be obtained from the exami-
nation of the structure of the fluctuating field, which in our opinion always displays
a signature characteristic of the underlying instability. A close-up view of the fluctu-
ating temperature field in the upper left corner is shown in figure 7. Unfortunately,
this structure is not reminiscent of any pattern characteristic of the classical known
types of instabilities. Recently, it has been suggested that this instability could be a
Kelvin–Helmholtz-type instability of the jet-like structure emerging from the vertical
boundary layers (Janssen & Henkes 1994). This was supported by an examination
of the spatial structure of the fluctuating field obtained for various aspect ratios and
Prandtl numbers, which allowed them to relate more clearly the instability pattern to
a Kelvin–Helmholtz-type instability than in the present case. A definitive explanation
would require linking the characteristic local Reynolds and Richardson numbers of
the local shear flow to the imposed macroscopic parameters which are the Rayleigh
and Prandtl numbers and aspect ratio. This remains to be done. Another specific
feature of the present instability mechanism is the large variation of its growth rate
with Ra in the vicinity of Rac. This manifests itself in the fact that for Ra values only
slightly supercritical the time traces which are obtained are highly nonlinear. Such a
behaviour is characteristic of thermal-type instabilities and it is very likely that the
present instability mechanism gets a substantial part of its energy from buoyancy
forces.

3.2.3. Discussion of the breaking of symmetry

That the onset of instability is associated with breaking of the centro-symmetry is
fully explained by bifurcation theory in the presence of symmetries (Chossat 1984). In
a space of divergence-free vector fields, the two-dimensional Navier–Stokes equations
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Figure 7. (a–i) Time sequence of fluctuating temperature field for Ra = 1.84 × 108; time interval
between two plots = 5; spatial resolution 72 × 72; only upper left corner of the cavity is shown.
Isovalues are: ±1.5× 10−2, ±1× 10−2, ±5× 10−3, ±2× 10−3, ±1× 10−3, ±5× 10−4.

with the Boussinesq approximation can be written

∂U

∂t
=L(U)U, (5)

where U represents the three fields (u, w,Θ)t defined on Ω and L is the nonlinear
evolution operator. It is a classical result that L is equivariant with respect to all
symmetries S such as the one that was introduced previously, that is SL = LS.
This result is also true for the linearized evolution operator governing the evolution
of small disturbances v about a steady solution V of (5):

∂v

∂t
=LU(V )v

where LU is the Frechet derivative of L. If V undergoes a supercritical Hopf
bifurcation, there exists a complex pair of eigenvalues (σ, σ) = i(ω,−ω) of LU which
crosses the imaginary axis, associated with a pair of complex eigenfunctions (v, v).
One thus has LUSv = SLUv = σSv which means that Sv is also an eigenfunction of
LU associated with eigenvalue σ. If the eigenspace associated with σ is of dimension
1 (which is most often the case), that is σ is a simple eigenvalue of LU , one thus
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(a) (b)

Figure 8. Instantaneous fluctuating temperature fields for Ra = 2 × 108; (a) shows the solution
which exhibits centro-symmetry; spatial resolution 72 × 72; isovalues are: ±1. × 10−2, ±4 × 10−3,
±1× 10−3, ±4× 10−4, ±1× 10−4, negative isovalues are shown as dotted lines.

has Sv = µv. Since S2 = I , it follows that µ2 = 1 or µ = ±1. Thus either Sv = v or
Sv = −v, denoting that either v possesses the centro-symmetry property or on the
contrary v is symmetrical with respect to the centre of Ω. Now if the Hopf bifurcation
is supercritical, for small supercritical values the bifurcated solution can be written

U(x, t) = V (x) + εR(exp(2πiωt)v + exp(−2πiωt)v) + O(ε2)

where ε = (Ra− Rac)1/2.
If v is such that Sv = −v, then it immediately follows that SU(x, t) = −U(x, t) and

the bifurcated solution continues to show the centro-symmetry property at any time.
On the other hand if Sv = v then the bifurcated solution loses the centro-symmetry
property. However

U
(
x, t+

π

ω

)
= V (x)− εR(exp(iωt)v + exp(−iωt)v) + O(ε2)

and

SU
(
x, t+

π

ω

)
= −U(x, t).

In the linear approximation, the bifurcated solution thus continues to show the centro-
symmetry properties shifted in time by half the oscillation period. This is no longer
true of the fully nonlinear solution.

3.3. Unsteady solutions for Ra = 2× 108

When computing solutions for large values of the Rayleigh number, it is customary
to use solutions obtained for slightly smaller values of the parameter as initial
condition. Whereas the final solution does not usually depend on the initial condition
in particular in the steady regime, one can anticipate non-unique solutions when
the solutions become time-dependent. When computations were performed for Ra =
2 × 108, using either the steady solution found for 1.8 × 108 or one instantaneous
centro-symmetry breaking solution for 1.9×108 as initial conditions, it was discovered
that the asymptotic solutions were not the same, although the transient features
look very similar. Both final asymptotic solutions are periodic in time and exhibit
oscillations with similar amplitudes and periods differing by less than 2% which
makes it very difficult to differentiate them merely from this criterion. One of the
solutions (the one which was obtained starting from a centro-symmetry breaking
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Figure 9. (a) Time trace of temperature at location (x, z) = (0.15, 0.88), Ra = 2 × 108 for cen-
tro-symmetric solution. (b) Corresponding density power spectrum. (c) Simultaneous time evolution
of log(Es(Θ)). Spatial resolution 72× 72, computations performed with ∆t = 5× 10−3.

solution) is characterized a period of 4414 time steps of 0.005 each (a period of 22.07)
whereas the other has a period of 4480 time steps (a period of 22.4).

These two solutions differ essentially by their spatial structure and figure 8 presents
two instantaneous fluctuating temperature fields for each of these solutions. These
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plots clearly show that one fluctuating field possesses the centro-symmetry property
while the other does not. One of these solutions belongs to the first branch of
solutions that was discussed in the previous paragraph whereas the other one belongs
to a second branch of solutions and corresponds to the eigenmode that was still
stable on the sketch of figure 2 and which has become unstable upon increasing the
Rayleigh number as could be expected. It was carefully checked that in either case
the asymptotic time behaviour of Es(Θ) was reached and that both solutions can
be considered as stable over very long, not to say infinite, integration times (see in
particular the time trace of Es(Θ) shown in figure 9c). We can therefore conclude
that there exist at least two unsteady periodic solutions to the Boussinesq equations
for a Rayleigh value of 2 × 108. By decreasing the Ra value, starting from the
centro-symmetric solution obtained for 2 × 108 as initial condition, we could obtain
periodic solutions on that centro-symmetric branch down to Ra values slightly less
than 1.9× 108.

It is also of interest to examine the time signals of pointwise quantities during the
transient evolution. Figure 9(a) presents such a time trace for the solution computed
for Ra = 2 × 108 using the steady solution obtained for Ra = 108 as the initial
condition (the time evolution for the other solution is very similar). It is noted that
the time interval shown corresponds to the final 2500 time units of a total integration
time of 5000, a very long integration period indeed. This required approximately 20
hours of CPU time on a Cray-2. It is seen from the figure that the asymptotic time
evolution is made up of two frequencies, which show up very clearly in the density
power spectrum (figure 9b). The primary frequency, which is low itself (about 0.045),
is modulated by a yet lower frequency, which seems to die out very slowly. The origin
of this very low frequency is somewhat obscure. It could correspond directly to the
characteristic frequency of another eigenmode, with its pair of complex eigenvalues
characterized by small negative real parts and which therefore requires a long damping
time. It could also come from the nonlinear interactions of two unstable modes with
slightly different oscillation periods, as could be the case if the solution was made up
of the two distinct eigenmodes found previously. This latter explanation can probably
be ruled out for several reasons. First, the solution is centro-symmetric and there is
therefore no component on the unstable centro-symmetry breaking subspace. Second,
the density power spectrum of the signal (figure 9b) shows only one peak close to
0.045, which seems to exclude the possibility of two centro-symmetric eigenmodes of
slightly different frequencies. It is therefore very likely that this damped low frequency
actually corresponds to a pair of eigenvalues with very small imaginary part (and
small negative real part) associated with an eigenmode. It would be of course of
great interest to determine the spatial structure of this eigenmode to understand its
physical origin.

3.4. Onset of travelling waves

As shown by others (e.g. Paolucci & Chenoweth 1989; Henkes 1990), the travelling
wave instability starts soon after the first instability mechanism. For Ra = 3 × 108,
the asymptotic time trace at a point located close to the wall in the upper left corner
is displayed in figure 10(a). This signal is evidently made up of several components
oscillating at different frequencies. The modulation of period approximately 20 corre-
sponds to the primary instability mechanism already discussed. The high-frequency
signal is attributed to travelling waves in the boundary layer. These travelling waves
are clearly seen in figure 11 which presents a time sequence of the entire fluctuating
temperature field obtained in the manner already described. The travelling wave
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Figure 10. (a) Time trace of temperature at location (x, z) = (0.17, 0.93), Ra = 3 × 108; Spatial
resolution 96 × 96, computation performed with ∆t = 4 × 10−3. (b) Corresponding density power
spectrum; sampling of 8192 points over interval of 1638.4.

period is 1.82 which is about 10 times smaller than the period of the primary
instability mechanism. Again, the fluctuating temperature fields show internal waves
that propagate in the core region at an angle of 20◦ (from horizontal) approximately.
The structure of the temperature fluctuations in the corner regions is now very complex
and the structures that come from the travelling waves in the boundary layers interact
very strongly with the structures due to the primary instability mechanism (see the
close-up in figure 12). Also apparent in the time trace is a modulation of very long
period approximately equal to 120.

The corresponding density power spectrum is displayed in figure 10(b). The peak
frequency corresponds to the travelling wave frequency f2 and is equal to 0.55. The
frequency of the primary instability f1 is equal to 0.048. Several peaks mf1 + nf2

with low values of m and n are visible and illustrate nonlinear interactions between
these two independent oscillators which are localized at neigbouring positions. The
lowest significant frequency present in the signal is approximately equal to 0.007, and
corresponds to the very long-period modulation observed in the time trace. It is unclear
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(a) (b)

(c) (d )

Figure 11. (a–d) Time sequence of fluctuating temperature field for Ra = 3 × 108; time interval
between two plots = 5; isovalues are: ±4 × 10−2, ±3 × 10−2, ±2 × 10−2, ±1 × 10−2, ±5 × 10−3,
±2× 10−3, ±1× 10−3.

whether it also corresponds to a linear combination mf1 + nf2 with large m and n
or to a third independent frequency f3. We favour this latter explanation and believe
that it is indeed due to the triggering of an independent oscillator corresponding
to a third instability mechanism. This is supported by two arguments. First, this
frequency closely matches the very low frequency that was found in the asymptotic
time evolution observed for 2 × 108, which corresponded then to a weakly damped
oscillator. Increasing the Ra value to 3×108 would have made that oscillator unstable.
Second, we believe that it does not come from nonlinear interactions between the
primary instability mechanism and the travelling waves. This is supported by the fact
that the travelling wave frequency f2 can only be seen in the time traces of monitoring
points located in the downstream parts of the boundary layers and is not present in
some regions of the flow, whereas the two other frequencies f1 and f3 are always seen
in the time traces of pointwise quantities whatever their location in the flow field. The
time evolution of the solution for Ra = 3× 108 would thus be characterized by three
independent frequencies and it could already be weakly chaotic as suggested by the
density power spectrum shown in figure 10(b) or by a Poincaré section (figure 13).

3.5. Chaotic solutions

In addition to the above results we have also obtained asymptotic solutions for
Ra = 109, 109.5 and 1010. The computations at the latter value of the Rayleigh
number were performed after the submission of the initial version of this paper and
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(a) (b) (c)

(d ) (e) ( f )
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Figure 12. (a–i) Time sequence of fluctuating temperature field for Ra = 3 × 108; time interval
between two plots = 2.5; close-up of area 0 6 x 6 0.5, 0.5 6 z 6 1. is shown; isovalues are:
±4× 10−2, ±3× 10−2, ±2× 10−2, ±1× 10−2, ±5× 10−3, ±2× 10−3, ±1× 10−3.

are included here to follow a suggestion made by one of the referees, in order to allow
for a direct comparison with corresponding simulations by Paolucci (1990). These
results have been presented elsewhere (Le Quéré 1994) and will not be discussed
in as much detail as the lower values. In these computations we have focused our
attention on Ra well above the onset of chaos in order to investigate directly the
dynamics and statistics of such solutions. For these parameter values, the flow is
considered to be weakly turbulent. For each Rayleigh number considered, solutions
were integrated using a solution corresponding to a smaller Rayleigh number as the
initial condition. For these computations, one needs to ascertain that the integration
time is long enough so that the transient effects due to the sudden change of Ra are
eventually ‘forgotten’, ensuring that a true statistically steady state has indeed been
reached. Table 2 shows the time-step values, spatial resolutions and total integration
times of the solutions computed. Note that these times are given in units of convective
scale (H2/α)Ra−1/2 and should be divided by Ra1/2 to be cast in units of thermal
diffusion scale (= H2/α). In particular, for 109.5 and 1010 integration was carried out
for approximately 0.003 units of thermal diffusion time whereas, for instance, Paolucci
(1990) stopped his computation around 0.001 starting from rest.
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Figure 13. Poincaré section of flow for Ra = 3 × 108; the Poincaré section is made of the
temperature and its time derivative at (x, z) = (0.17, 0.93) conditioned by the Nusselt number.
Computation performed with spatial resolution 96× 96 and ∆t = 4× 10−3. The Poincaré section is
made of approximately 1000 points which required integrating over 500 000 time steps.

Ra N ×M ∆t Total time

108 72× 72 tau
3× 108 96× 96 tau

109 193× 193 tau 2.0× 10−3 600.0
109.5 256× 385 tau 1.0× 10−3 400.0
1010 256× 320 coll. 2.0× 10−3 300.0

Table 2. Computation parameters: spatial resolution N ×M and algorithm, time step ∆t.

The time needed to reach the asymptotic state is not known a priori. Patterson &
Imberger (1980) have shown that, in the convection-dominated laminar regime, the
time to achieve steady state is of the order of 0.1× Ra1/2 in the time unit considered
here. This very long time scale is the time needed to damp, through diffusion and
viscous effects, the internal gravity waves sustained by the stratified core region which
have been generated in the transients following the sudden change in Ra value. It
is clear that if the time needed here were of the same order as this time scale,
the statistically accurate steady state would be out of reach. However, because the
solution is very chaotic and shows large-amplitude fluctuations which enhance long-
scale mixing, it is clear that the time required to achieve asymptotic behaviour is
decreased. This is also due to the fact that as was shown above and will be confirmed
below, internal wave motion is intrinsically part of the asymptotic time behaviour,
and hence the long time scale needed to damp out these waves becomes irrelevant in
the present chaotic flow regime.
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(a)

(b)

Figure 14. Instantaneous temperature (left) and flow (right) fields for Ra = 109 (a), Ra = 109.5 (b).

3.5.1. Flow structures

Instantaneous flow structure

As mentioned earlier, at these parameter values, the flow exhibits large-amplitude
unsteady fluctuations. Typical instantaneous flow and temperature fields are displayed
in figure 14 for the two lowest Rayleigh numbers. They show that, as expected, the
flow is increasingly disorganized and chaotic as the Rayleigh number increases. In
particular, it is seen that, for the higher Ra, the travelling waves have grown to the
point where they totally disrupt the boundary layer, which at times separates from
the wall. These zones correspond to the formation of hook-like structures (figure 14)
in the temperature field which characterize buoyancy-driven boundary layers in the
transition regime. These hook-like structures are due to strong vortices that spin
clockwise (in the hot boundary layer) very fast compared to their upward velocity
and which eject hot fluid and entrain colder fluid. From the flow structure, it is
also clear that the core region exhibits large-scale unsteady structures appearing as
wave-like patterns on the isotherms in the core region of the cavity.

The motion in the cavity core is due to the internal wave activity. First, as already
described, in this configuration internal waves get excited at the onset of unsteadiness
because the frequency of the primary instability mechanism is smaller than the natural
Brunt–Väısälä frequency. As long as the excitation is mono-periodic the internal wave
pattern responds to this excitation by displaying the pattern shown in figure 5 or
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Figure 15. Time trace of Nusselt number Nuc (a) and its density power spectrum (b) for Ra = 109.5;
density spectrum is obtained from a time series of 8192 points over a time interval of 163.84. Spatial
resolution 256× 384, computation performed with ∆t = 5× 10−3.

figure 8. At higher values of Ra, the flow becomes chaotic and is then characterized
by a broad-band spectrum. The wave pattern in the core should therefore not be
expected to be so regular and it is very likely that it oscillates according to various
modes characterized by several wavenumbers in the vertical and horizontal directions.
As was shown by Thorpe (1968), in a closed cavity, internal waves can build standing
patterns which are characterized by their number (n, p) of half-wavelengths in the
vertical and horizontal directions, respectively. The frequency of the (n, p) mode is

σ2
np =

f2
BV

1 + n2/(p2A2)
,

where A is the aspect ratio of the linearly stratified core region. In our time unit,
the dimensionless Brunt–Väısälä frequency is fBV = (CPr)1/2/(2π), where C is the
dimensionless stratification measured in units of ∆T/H . Taking C = 1 (see figure 16)
gives fBV = 0.134. It is clear from the shapes of the isotherms in the core that there
exists at least two or three wavelengths of horizontally propagating internal waves
in the core, which seem to propagate from the hot wall towards the cold wall in
the upper part of the core and from the cold wall to the hot wall in the bottom
part of the core. The wave pattern in the vertical direction is less clear. However,
the characteristic frequency of any standing wave pattern should be between fBV/

√
2
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(a)

(b)

(c)

Figure 16. Time averaged temperature (left) and flow (right) fields for Ra = 109 (a), Ra = 109.5 (b),
Ra = 1010 (c). Streamline isovalues for Ra = 109.5 are: 0.0005 (0.0005) 0.005.

and fBV . It is known that the internal wave oscillations are well characterized by
the time evolution of the mean Nusselt number Nuc through the vertical mid-plane
(figure 15a). Its density power spectrum shows a dominant frequency of 0.098 which
falls within the range predicted. We thus believe that it is clearly demonstrated that
internal wave oscillations are intrinsically part of the asymptotic flow regime, even
though it seems that one should not anticipate a unique and well-defined wave pattern.
Video-animations made from the results also very clearly show the phenomenon and
support this assertion.

Time-averaged flow structure

The time-averaged solutions integrated over a long period are displayed in figure 16.
The usual typical flow features, i.e. thin vertical boundary layers and a stratified core
region as well as corner recirculations, are evident.
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Figure 17. (a) Vertical velocity profiles at mid-height and (b) wall shear stress for Ra = 109 (solid
line) and Ra = 109.5 (dashed line). The vertical velocity profile is plotted vs. x × Ra1/4. The shear
stress is defined as Ra−1/4∂w/∂x.

It is also noted that whilst the time-averaged solution for 109 shows little difference
from the well-known structure corresponding to the end of the steady laminar regime,
the solutions for 109.5 and 1010 increasingly depart from this structure. In particular,
the corner recirculation zones exhibit a much stronger flow. This is confirmed by the
maximum values of the streamfunction in these recirculation regions which increases
with Ra, whereas in the present units, the flow rate in the boundary layer decreases
like Ra−1/4, as confirmed by the plots of the velocity profile at the mid-cavity height
(figure 17a). It is also noted that there is a sudden thickening of the boundary layer
along the hot wall around z ' 0.7 (and symmetrically in the cold boundary layer),
which corresponds to a sharper decrease of the wall shear stress followed by a plateau
corresponding to a locally parallel flow and constant velocity maximum (figure 17b).
On the other hand, the temperature fields show that the core regions still display
uniform stratification for all Ra values. However, it is seen that while for the two
lowest Ra values, the dimensionless stratification remains very close to 1 in units
of ∆T/H , it increases to 1.1 for the highest Ra. This is in disagreement with the
‘asymptotic’ stratification (i.e. 0.38) reported by Paolucci in the 1010 case. Further, in
a companion study (Xin & Le Quéré 1995) performed in a cavity of aspect ratio
4 for RaH up to 1010, it was also found that the stratification at mid-cavity height
remained very close to 1 for RaH values up to 2× 109 and increased to 1.2 for 1010.
The increased stratification is attributed to an increased depth of the isothermal hot



From unsteadiness to chaos in a differentially heated cavity 103

0.5

0.4

0.3

0.2
0 40 80 120 160

0

–1

–2

–3
0 42 6 8 10 12 14

(a)

0

–1

–2

–3
0 42 6 8 10 12 14

(b)

0

–1

–2

–3

0 1 2 3 4

(c)
0.179

0.176

0.173

0.170
0 40 80 120 160

0.35

0.33

0.31

0.29

0.27
0 40 80 120 160

Time Frequency

Figure 18. Time traces of temperature (left) and their density power spectra (right) at locations
(x, z) = (0.0054, 0.85) (a), (x, z) = (0.0054, 0.735) (b), (x, z) = (0.0054, 0.5) (c) for Ra = 109.5. Spatial
resolution 256× 384, calculation performed with ∆t = 1× 10−3. The first two density power spectra
have been obtained from averages of 4 spectra of 2048 points each over a time interval of 40.96.

and bottom parts of the core as a result of enhanced mixing, which in turn results
in an increased slope near the mid-cavity height. Our results are further confirmed
by some more recent results by Nobile & Sousa (1994) showing the same trend (i.e.
stratification larger than 1). Therefore, there is no evidence of stratification decrease
in this range of Ra, and the low value reported by Paolucci (1990) was probably
due to insufficiently long integration, particularly in the light of his computation
being performed from rest. As is evident, the time-averaged isotherms in the core
are straight horizontal lines and no longer show the wave-like patterns discussed
previously. This is further evidence of their internal wave origin.
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Ra f f × Ra−1/4 × 103 Nu NuRa−1/4

108 30.2 0.302
3× 108 0.55 4.12 40.1 0.305

109 0.75 4.22 54.6 0.307
109.5 1.0 4.22 74.5 0.310
1010 − − 100 0.316

Table 3. Travelling wave frequency f and Nusselt number Nu.

3.5.2. Instantaneous flow features

For the sake of brevity, only examples of time traces of temperature for Ra = 109.5

at several locations in the upward boundary layer are displayed in figure 18. At the
mid-cavity height, the time trace of the temperature exhibits low-frequency oscillations
which correspond to the internal wave oscillations. Further downstream, at (x, z) =
(0.0054, 0.735) one begins to see travelling waves which appear as high-frequency
oscillations modulated by a smaller frequency. The high frequency corresponds to
the travelling waves in the boundary layers and the peak frequency obtained from a
density power spectrum of the signal is equal to 1.0. At a position further downstream
(x, z) = (0.0054, 0.85), the waves have grown resulting fluctuations of much larger
amplitude which are also much more irregular in time.

Table 3 shows the evolution of basic frequencies found in the typical time traces
of pointwise quantities as the Rayleigh number increases. In particular, it is clear
that the high-frequency characteristic of the travelling waves evolves like Ra1/4. This
behaviour is somewhat surprising since it has been previously shown (Penot et al.
1990) that, for the travelling wave instability, each individual branch of solution is
characterized by a constant frequency in the units considered here. The explanation is
the following: since we are considering a wide range of Rayleigh numbers, we are not
observing the dependence of the frequency of the oscillations on one single solution
branch but the evolution with Ra of the characteristic frequency of several of them.
Previous linear stability analysis of the buoyancy layer by Gill & Davey (1969) has
indicated that the ratio of the phase speed of the travelling waves to the maximum
velocity is constant and approximately equal to 0.8. Since the maximum velocity
itself is constant (in the velocity units considered here), the decrease in frequency is
linked to the increase of the number of travelling waves circulating around the cavity.
Assuming that the ratio of the wavelength of the travelling waves to the boundary
layer thickness remains constant, the number of waves scales like the reciprocal of the
boundary layer thickness which decreases like Ra−1/4, accounting for the observation.
This suggests that, at least for the range of Ra in the table, the classical laminar
scalings still hold regardless of the chaotic nature of the flow.

3.6. Sample turbulent statistics

One of the promising features of these ‘direct numerical simulations’ is the possi-
bility of computing the average quantities which characterize the turbulent motion.
It should be emphasized that, since the corresponding flows are only transitional,
the quantities presented in this section should be considered more as a check of the
methodology rather than actually physical turbulent quantities. As noted in the In-
troduction, realistic turbulent quantities can only be obtained from three-dimensional
computations. For Ra = 109.5 examples of such calculations for turbulence kinetic
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(a) (b) (c)

(d) (e)

Figure 19. (a–e) Turbulent fields for Ra = 109.5: (a) mean kinetic energy, (b) turbulent energy
1
2
u
′2
i , (c) temperature variance θ′2, (d) viscous dissipation (∂u′i/∂xj)(∂u

′
i/∂xj), (e) thermal dissipation

∂θ′/∂xj)(∂θ′/∂xj). Only the upper left quarter of cavity is shown.

energy of the mean motion, the temperature variance, and the viscous and thermal
dissipation rates are displayed in figure 19. These plots nonetheless confirm that, as
previously noted, turbulent fluctuations are only significant in the downstream part
of the boundary layer. They also show that the temperature fluctuations are spatially
well correlated to the thermal dissipation rate, but this does not seem to hold so well
for the turbulent energy and its viscous dissipation. For the higher Ra value of 1010,
similar trends have been observed (Le Quéré 1994).

3.7. Heat transfer

Table 3 also gives a comparison of the time- and space-averaged Nusselt numbers for
different Ra values. For the sake of completeness we also recall the value obtained
for 108 (Le Quéré 1991). The last column shows that over the range of Ra values
considered, a Nu ∝ Ra1/4 relationship is still valid, which shows that, at least for the
range considered here, the chaotic motion has only a minor influence on the mean
heat transfer. Typical local Nusselt number distributions are shown in figure 20. They
show that the chaotic motion only plays a significant role in the downstream part of
the boundary layers since the time envelopes of the local maximum and minimum
Nusselt numbers are identical for up to about z ' 0.7. It is also apparent that there
is a region of exponential growth of the fluctuations in the boundary layer. This
region moves upstream with increasing Rayleigh number. The value at which this
rapid growth is observed is consistent with what was found experimentally by Mergui
& Penot (1996). In fact, the shape of their measured local Nusselt number profiles
is very similar to ours, despite the fact that their temperature boundary conditions
are different. We note that their boundary conditions are more representative of
the perfectly conducting case whereas our horizontal walls are adiabatic. Given this
difference, the agreement between our results interpolated for Ra = 1.69 × 109, that
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Figure 20. Local Nusselt number distributions along hot wall for Ra = 109 (a) and Ra = 109.5 (b).
Solid and dashed lines are the maximum and minimum envelopes in time while the dotted line is a
typical instantaneous distribution.

is 62.5, and their measured values of 53 and 56 along the heated and cold walls,
respectively, is fair.

4. Conclusion
We have performed two-dimensional computations of natural convection in a

differentially heated square cavity starting from the onset of unsteadiness to the
transitional chaotic regime. These computations have been carried out with a code
based on Chebyshev spatial differencing and a second-order time-stepping algorithm
and are thus believed to be highly accurate. In particular we have paid attention to
the time integration lengths in order to obtain the asymptotic time behaviour of the
solutions, both at the onset of unsteadiness and for the chaotic regime in order to
obtain meaningful statistical quantities. We have shown that the onset of unsteadiness
takes place at a critical Ra = 1.82 × 108 and that the first instability mode breaks
the usual centro-symmetry of the solution. This instabilty takes place at the base of
the detached flow region along the horizontal walls. The boundary layers themselves
become unstable soon after, and transition to chaos seems to proceed through quasi-
periodicity. Concerning the chaotic regime, we have shown that the time-averaged
flow structure increasingly departs from the classical laminar structure, although the
laminar scalings still hold. The vertical stratification in the core region remains larger
than 1 for the range of parameters considered here. It is hoped that extension of
such computations to larger Rayleigh numbers and three dimensions will serve to
contribute to the establishment of a data base which will help the development of
better turbulence models for buoyant flows.

The computations were performed on the CRAY-2 at C2VR and on the C90
at IDRIS. This work was supported by DRET under contract 91-150. M. Behnia
acknowledges CNRS’s partial financial support during his stay at LIMSI.



From unsteadiness to chaos in a differentially heated cavity 107

REFERENCES

Armfield, S. 1992 Conduction blocking effects in stratified intrusion jets. In Proc. 11th Australasian
Fluid Mech. Conf., pp. 335–339.

Chossat, P. 1984 Bifurcations en présence de symétrie dans les problèmes classiques de
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